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ABSTRACT

This paper focusses on the estimation of natural
frequencies and modal damping ratios from measured
response spectra, with particular emphasis on the
dynamic response of offshore structures to wind and
wave excitation. At present, estimates of natural
frequencies and damping ratios are computed from the
location and half-power bandwidths of resonant peaks
in a structure's ambient response power spectrum.
While reliable natural frequency estimates are typi-
cally obtained in this manner, half-power bandwidth
damping estimates are shown to be highly sensitive to
the method employed in estimating the response spec-
trum. The lack of confidence bounds on natural
frequency and damping estimates further restricts the
utitity of the estimates. An alternative method is
developed based on a powerful method of spectral
estimation known as the Maximum Entropy Method (MEM).
The resulting technigue yields estimates of natural
frequencies and modal damping ratios as well as
approximate statistics on the reliability of the
estimates. Performance of this new method is ex-
piored through extensive Monte Larlo simutation of
one and two degree-of-freedom systems. Conventional
estimates are also simulated for comparison with the
MEM parameter estimator. The use of the MEM parame-
ter estimator is further illustrated with ambient
response data from Shell 0il's South Pass 62C plat-
form. The MEM parameter estimates show excellent
agreement with natural frequency and damping esti-
mates obtained during recent tests conducted using
forced excitation.

INTRODUCTION

To date, substantial effort has been expended in
attempts to estimate dynamic response parameters of
offshore structures. Natural freguencies, mode
shapes and damping ratios have been estimated with
varying degrees of success. A portion of the effort
has been motivated by active research and development
of structural integrity monitoring systems. The
viability of such techniques is particularly depen-
dent on the ability to accurately estimate natural
frequencies and mode shapes. For design purposes,

References and iTlustrations at end of paper.

however, accurate estimates of damping ratios are
even more important. The future design of fatigue
resistant deepwater platforms, whose fundamental
periods lie wel} within energetic portions of the
wave spectrum, depend upon accurate knowiedge of the
damping ratios of existing structures.

At present the most widely practiced method of
estimating natural frequencies and damping ratios of
an offshore structure utilizes measurements of the
platform's response to wind and wave excitation.
Time-synchronus acceleration records are typically
gathered at different locations on the platform and
processed into auto- and cross-spectra using Fast
Fourier Transform (FFT) spectral estimators. This
convenient representation of the data permits peaks
in the spectrum to he associated with "global" modes
of vibration. Each natura! frequency and damping
ratio is typically estimated from the frequency at
which a peak occurs and its half-power bandwidth.

This estimation scheme (hereafter referred to as
the conventional method) has, for the most part,
proved to be a satisfactory means of ascertaining
natural frequencies. For this reason the primary
emphasis of this paper is the estimation of damping
from ambient response spectra.

Conventional Damping Estimation

Half-power bandwiths obtained from a structure's
ambient response spectrum have frequently been repre-
sented as an absolute measure of the structure's
damping. Unfortunately, this ignores the fact that
the damping estimates are computed by manipulating
samples taken from a realization of a random process
(i.e., the acceleration response). Such damping
estimates are only realizations of a random variable
known as the damping estimator. Accordingly a damp-
ing estimate computed from measured data can take on
any value allowed by the estimator's probability
distribution and thus has little meaning without
further information. To demonstrate this point, the
conventional damping estimator was applied to the
numerically simulated response of a single degree-
of-freedom system excitated by Gaussian white noise.
A 21 minute time history was created for a resonator
with a 1 Hz natural frequency, 3% damping and 30 db
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signal to noise ratic (defined as the ratio of the
height of the spectral peak to the neise floor). The
record was sampled at 8 Hz and two auto-spectra were
computed by the Blackman-Tukey method [1,2]. The
first of these spectra was computed with an approxi-
mate resolution of 0.16 Hz and is shown in Figure 1
as a solid line. The conventional half-power band-
with damping estimate for this spectrum is 5.3%. In
this particular example one might have anticipated an
inflated damping estimate on the basis of inadeguate
resolution. Increasing the resolution to 0.016 Hz
produced the spectrum shown as a dashed line in
Figure 1. In this case, the damping was estimated at
1.6%. This simple example rather dramaticailly demon-
strates the sensitivity of the damping estimate to
one's spectral analysis procedure. Furthermore,
there is no guide to indicate the most accurate
procedure. The conclusion here is simply that more
information about the statistical nature of the
estimator is needed in order for an estimate to be
useful.

The most frequently used guantity for expressing
the statistical nature of an estimator is a confi-
dence interval. Briefly stated, the confidence in-
terval for an estimate defines a range of parameter
values surrounding the estimate which has a high
probability (typically 95% or 99%) of containing the
expected value of the estimator. When the expected
value of the damping estimator equals the true damp-
ing, the estimator is said to be unbiased and the
confidence interval reflects the uncertainty in es-
timating the true value. For example, if a damp-

ing estimate, £ is obtained from an unbiased esti-
mator with a Gaussian probability distribution and
variance, o2, then one can state with 95% confidence
that the true damping is contained in the interval

[£-1.960, E+1.960]. Thus the confidence intervatl
provides a measure of how far the estimate may be
expected to be from the true value.

In order to implement confidence intervals with
damping estimates, one must be able to evaluate the
expected value and variance of the estimator. Unfor-
tunately, these statistics are not available within
the current state-of-the-art. To gain insight into
the magnitude of these statistics, simulation studies
were conducted on estimates made from the response of
simple one and two degree-of-freedom systems excited
by white noise. Briefly, fifty independent response
time-histories were numerically generated for systems
with known natural frequencies, damping ratiecs and
signal-to-noise ratios. Blackman-Tukey auto-spectra
were computed for each realization at thirteen dif-
ferent resolutions and the conventional damping
estimator was applied to each of the spectra. The
desired ensemble statistics were approximated by the
average and variance of the fifty damping estimates
obtained for a given resolution. The results for a
one degree-of-freedom system with a 1 Hz natural
frequency, 3% damping and 30 dB signal-to-noise ratio
are shown in Figure 2. 1In this example each realiza-
tion consisted of a 21 minute displacement response
record sampled at 8 Hz. The triangles shown in the
figures represent the value of the average damping or
its standard deviation obtained from the fifty reali-
zations. The abscissa in both figures is a non-
dimensional quantity which can be interpreted in
terms of spectral resolution or variance. Since the
record Tength is fixed for the results shown in
Figure 2, the lag to record Tength ratio (R = L/T} is
inversely proportional to resolution (resolution =
2/TR) and directly proportional to the variance of

the spectral estimator. The dashed line in the top
figure shows the true value of the damping and in the
bottom figure represents the Cramér-Rao bound on the
standard deviatien of the estimator. This bound is
the smallest standard deviation that any unbiased
estimator of the damping can have, for the specified
record length and resonator characteristics. Any
unbiased estimator which achieves this bound is
called an efficient estimator and can be shown to
possess numerous desirable properties [3].

The results of this simulation study reveal that
the bias and variance of the conventional damping
estimator is strongly retated to the properties of
the spectral estimator. Figure 2 shows the nature of
the trade-off between bias and variance that must be
made in selecting the resolution.

The results of this study also show that the
conventional damping estimator is not efficient.
This is demonstrated in Figure 2 by a standard de-
viation which is substantially larger than the
Cramér-Rao bound at lag to record length ratios
corresponding to an unbiased estimator. The use of
such a non-efficient damping estimator may severly
1imit the utility of the estimated damping ratio.
For example, in Figure 2 a lag to record Jlength ratio
of 5% yields an unbiased estimator with a standard
deviation 0.75. Putting this information in the form

of a confidence interval for an estimate £, one can
state with 95% confidence (assuming a Gaussian dis-
tribution) that the true damping ratio lies in the

interval (£-1.5, £+1.5). However, if the estimator
had been efficient, the associated confidence inter-

val would be (£-0.5, £+0.5). These results indicate
that the conventional damping estimator would require
substantially Tonger records to attain confidence
intervals equal to those of an efficient estimator.
It is important to remind ourselves at this point
that the discussion of efficiency and confidence
intervals for the conventional damping estimator is
completely academic since the estimator statistics
cannot be evaluated when working with field data.

It might be argued that an alternative to com-
puting these statistics would be to use very long
records and thus ensure small uncertainties in the
damping estimates. However, it can be shown that in
most cases the record tengths required to achieve
this goal are by far too long to be practical. For
example, the Cramér-Rao bound shows that for the
system associated with Figure 2, an efficient esti-
mator would require 4 hour response records in order
to have 5% uncertainty in damping estimates. Since
the conventional damping estimator is inefficient one
would actually require records considerably longer
than 4 hours.

An Alternative to the Conventional Method

The preceding discussion has clearly demon-
strated the fpabitity of the conventional damping
estimator to provide accurate damping estimates from
amhient response time-histories of practical length.
In an attempt to overcome the inadeguacies of the
conventional method, an alternative technique of
spectral estimation known as the Maximum Entropy
Method was employed. The result was the development
of a new natural frequency and damping estimator
which capitalizes on MEM's ambient ability to provide
smooth, highly resolved response spectra from short
time histories and also furnishes approximations for
the bias and variance of its estimates.
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Prior to the discussion of the new estimators, a
brief introduction to MEM will be given in view of
its relative newness to the field of vibration test-
ing. The interested reader is refered to reference 4
and its bibliography for more complete details on
MEM.

The Maximum Entropy Method of Spectral Estimation

To introduce the philosophy behind the Maximum
Entropy Method, it is convenient to describe MEM in
terms of its similarity with the Blackman-Tukey spec-
tral estimator. It is recalled that the Blackman-
Tukey method computes spectral estimates as the
Fourier Transform of autocorrelation functions esti-
mated from finite duraticn time-histories. Spectra
computed with the Blackman-Tukey method can be shown
to be inherently 1imited in resoltution as a result of
the required truncation of the estimated autocorrela-
tion function and the implicit extension of the
truncated function to infinite lag with zeros. The
Maximum Entropy Method, on the other hand, seeks to
improve resolution by analytically extending the
autocorrelation function from its truncation point to
infinite lag in a more realistic manner. It is this
extension of the autocorrelation function which farms
the basis of the maximum entropy spectral estimate.

The extension of the autecorrelation function
which MEM achieves can be viewed as the result of
fitting a special model to a finite portion of the
known autocorretation function. This model provides
the analytic means for extrapolating from "p + 1"
samptes of a known autocorrelation function, R(k),
k=0, 1, ... p, to obtain the remaining values, R(k),
k=p+1, ... ®», In a superb mathematical development,
which is beyond the scope of this paper, Burg [5]
demonstrated that the maximum entropy extension of
the autocorrelation function is given by the follow-
ing pth order recursion equation:

R(k) = -AR(k-1) - A,R(k-2)
(1

- ... -A_R(k-p) ; k»0
p(p)

The parameters {[A} are obtained as the solution of
equation (2) which is commonly known as the Yule-
Walker equations. Thus if given p+l lags of

R(O) R(1) R(p-1) | [ A4 R(1)
R(1) RO . . . A, R(2)

= . @
R(p-1) R(1) R(0) A R(p)

p

an autocorrelation function, one can uniquely define
the pth order MEM coefficients Al’ AU Ap and subse-

quently generate the extended autocorrelation func-
tion. To illustrate this concept acceleration data
collected on Shell 0il's South Pass 62C [6] and
sampled at 6.4 Hz was used to estimate the 50 second
(320 1ag) autocorrelation function shown at the top
of Figure 3. The first 10 seconds of the autocorre-
tation function were then used to compute the 64th
order MEM coefficients which, in turn, were used to
extrapolate the next 40 seconds of lag. The result-
ing function is shown on the bottom of Figure 3. As
required MEM duplicated the "known" portion of the
autocorrelation function exactly and then extended
the function into the unknown region. It is this

extension of the autocorrelation function that pro-
vides improved resolution in the final spectral
estimate.

The infinite duration autocorrelation function
determined by equations (1) and (2) provides an
appealing conceptual framework for MEM. In practice,
however, one need never actually compute the extended
function in the course of determining the power
spectrum. Instead, it can be shown that the pth
order MEM spectrum is uniquely defined as

a2 A
S(f) = P
Top -3 2
5 Ake jonkfA
k=1

(3)
1 +

where: Ak are the pth order MEM coefficients

p
o2 = R(0) - 5 A R(K)
P k=1 K

A is the sampling increment
j= 41

A major impediment to the wide~spread usage of
this spectral estimator has been the difficulty
selecting the order "p" which produces the optimum
estimate. Several criteria have been suggested as an
aid in the selection process but as yet no definitive
general technique has emerged. In the sections to
follow the order selection problem will be defined in
terms of the more easily solved task of finding the
order which produces the optimum natural frequency or
damping estimate.

The MEM Natural Frequency and Damping Estimators

The estimation of natural frequencies and damp-
ing ratios from an MEM spectral estimate dces not
immediately appear to have any ¢great advantage over
the conventional method. However when the form of
the pth order MEM spectrum is reviewed it is found
that the spectral estimate is actually a closed-form
equation for the response spectrum. This unique
feature of the MEM spectral estimator provides the
key to formulating the parameter estimators and their
statistics.

The MEM natural frequency and damping estimators
are gquite easily obtained from the definition of the
conventional parameter estimator. For example, the
estimation of natural frequencies can be expressed as
the selection of frequencies corresponding to rela-
tive maxima of the response spectrum. This search
for maxima can be recast into a more mathematical
form using the result from calculus which states that
the derivative of a function is zero at an extrema.
Since the spectrum is available in functional form,
the relative extrema of the power spectrum can be
found by solving

ds(f

af = 0

(4

Thus all natural freguency estimates for a given
spectrum can be obtained as solutions of equation
(4). Substituting equation (3) into equation (4) and
simplifying produces equation (5); the definition of
the MEM natural frequency estimator.
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P P
3z kAkAﬁsin[Zﬂ(E-k)fA] =0
k=0 £=0

where: Ao =1

Similarly, the half-power fregquencies are defined in
the present context as the pair of frequencies brac-
keting the natural frequencies which correspond to
spectral ordinates 3 dB down from the resonant peak.
In more concise terms, the half-power frequencies are
solutions of

{6)

S(f) = % ()

As before, substitution of equation (3) into equation
(6) produces the MEM half-power frequency estimator

p P
2 Z

AkAn{cos[Zn(k-E)fA]
k=0 2=0

-2 cos[2n(k-2)fna]} =0

where: Ao =1

The estimation of natural and half-power fre-
quencies with equations (%) and (7) is easily accom-
plished using a numerical solution scheme such as
Newton's method. These algorithms are easily imple-
mented on a computer and only require an initial
estimate of the parameter to solve the estimation
equation. The solution of equations (5) and (7) by
Newton's method is demonstrated in reference 4.

The MEM estimation equations developed thus far
are a convenient means of computing the conventional
parameter estimates from MEM spectral estimates.
However, it should be recognized that the estimates
obtained using equations (5) and (7) are virtually
the same as the estimates that would be obtained from
the MEM spectrum graphically. The exceptional facet
of the analytical formulation is that it provides the
means for evaluating the estimator statistics. The
expected value and variance of the parameter estima-
tors are found via a rather grueling exercise in
mathematics, the details of which may be found in
reference 4. It suffices to say in this presentation
that the estimator statistics are obtained, after
several assumptions, by expanding the estimation
equations about the true values of the parameter
estimates. The resulting expressions, which are valid
to first order, relate the expected value and vari-
ance of the estimators to the true value of the
estimated quantity and the MEM coefficients. In
practice these statistics are evaluated using the
estimated parameters since the true values are
unknown.

To verify the utility of these first-order
approximations to the estimator statistics, the
simulation studies conducted on the conventional
method were repeated using the MEM estimators.
Figure 4 illustrates the typical characteristics of
estimates made from the response of a single
degree-of-freedom system. The properties of the
resonator used in the example are identical to the
system described in reference to Figure 2. The
format of Figures 2 and 4 are the same with the
exception of an additional line added to the bottom
of Figure 4. This line is the standard deviation of
the estimator predicted by the first~order approxi-
mation,

The simulation results for the single degree-
of-freedom system reveal that the MEM damping esti-
mator is not an asymptotically efficient estimator
due to the presence of a small positive bias (less
than 5%} at orders corresponding to attainment of the
Cramér-Rao bound. The results reveal that the aver-
age damping converges to consistently high values and
that the bias decrease with increasing true damping.
The most important consequence of this study was the
verification of the first order prediction of the
estimator statistics. In each test case it was found
that the first-order approximation for the standard
deviation of the MEM estimators provides an excellent
match to the simulation results.

Simulation studies of two degree-of-freedom
systems also demonstrated excellent agreement with
the theoretically predicted estimator statistics. A
typical result from the two degree-of-freedom tests
is shown in Figure 5. In this example the system had
natural frequencies at 0.5 Hz and 1.0 Hz with 2%
damping for both modes. The signal-to-noise ratio
was 30 dB for each mode and the record length and
sampling fregquency were unchanged from the preceding
example.

The results presented in Figure 5 show that s
the order increases, the average damping estimate
exhibits Targe fluctuations which quickly decay to
small cycles about a biased estimate. These studies
showed that the MEM damping estimator contains 1ittle
bias (5% or less depending on the true damping) and a
standard deviation very nearly equal to the Cramér-Rao
bound when the record length is Tong and the natural
frequencies are well separated. While the exact
behavior of the damping estimator is unknown for very
small natural frequency separation, it is felt that
targe systematic biases inherent to half-power damp-
ing estimates will dominate the estimation error.

Figure 5 also illustrates the typical agreement
between the theoretically predicted and "measured"
estimator statistics. Unlike the results presented
for the single degree-of-freedom systems, the theore-
tical standard deviation was found to substantially
different from the simulation results for orders
corresponding to biased estimates. However, the
first-order approximation demonstrated good agreement
with the simulation statistics at sufficiently lang
lags that transients in average dumping had decayed.
In all cases where the theory departed from the
measured values, the predicted values of the standard
deviation were found to exceed the true values.
Consequently, many plots of the theoretical standard
deviation versus order exhibit a rapid drop followed
gentle rise with increasing lag to record length
ratio. This trend will prove to be very useful in
selecting the optimum parameter estimate when analyz-
ing field data.

PERFORMANCE OF THE MEM DAMPING DAMPING
ESTIMATOR WITH FIELD DATA

The MEM damping estimator has thus far been
studied in an ideal setting. Theoretical properties
of the estimators were developed and characteristics
with simulated data were delineated. The information
obtained from these analyses are combined in this
section into a procedure for the estimation of
natural frequencies and dampings from experimentally
measured response data. The guidelines for practical
parameter estimation are readily illustrated by means
of an example analysis.
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The data used for this purpose were obtained
from ambient response recordings from Shell Qil's
South Pass 62C platform. This platform is an eight-
leg diagonally braced jacket structure which stands
in 327 feet of water. The estimation of this struc-
ture's natural freguencies and damping ratics has
been the subject of numercus experimental and analy-
tical studies which include a recently conducted
full-scale forced vibration test. The platform
praovides an ideal test for the MEM estimators.

Ambient response measurements were obtained
using two accelerometers as described in reference 6.
Acceleration response was recorded for 32 minutes
using an FM tape recorder. The signal was low-pass
filtered at 3 Hz prior to recording to remove high
frequency machine noise. Records were digitized with
a sampling frequency of 6.4 Hz and autecorrelation
functions were computed for each of the records with
a maximum Tag of 160 seconds. MEM spectral estimates
were computed for both end-on and broadside response
measurements. The broadside response spectrum is
shown in Figure 6. The fundamental broadside and
torsion modes are clearly revealed. MEM damping
estimates and their corresponding standard deviations
were determined for each of the fundamental modes.
Estimates were evaluated at 44 different orders
ranging from 12 to 100 (i.e., lag = 2.03 - 15.8
seconds). The resulting estimates for the first
broadside flexure mode are shown in Figure 7. The
top figure shows the parameter estimates obtained at
different lag to rec%rd length ratios (i.e., orders
of the MEM spectra). ® The standard deviation &,
computed with each of the parameter estimates is
plotted in the bottom figure. The standard deviation
is also used to compute * 25 confidence bounds which
are shown in the top figure as dashed lines. This
figure contains sufficient information to select the
"best" estimate of the damping for the lowest broad-
side flexural mode.

The essential task in selecting an optimum
estimate is to find the value which the estimates
converge to as the lag ratio {(i.e., the lag to total
record length ratieo) increases. The use of this
value as the estimate-is supported by results of the
simulation studies. - In each of the cases described
in reference 4, the average parameter estimate con-
sistently converged to within a few percent of the
true value as the lag ratio increased. Consequently,
selection of an estimate from the "region of conver-
gence" provides reasonable assurance of a minimaily
biased estimate.

Identification of convergence is in most cases a
reasonably straightforward process. Examining Figure
7, it is found that the behavior of the parameter
estimates as a function of lag ratio is characterized
by a period of erratic fluctuations which degenerate
to small cyclical variations in the estimates.
Similar patterns observed in two degree-of-freedom
simulations identify these small variations as char-
acteristic of converging estimates. Simulation
results also suggest that additional evidence of
canvergence is supplied by the presence of a gradual
increase in the standard deviation across the region
of convergence. While the standard deviations shown
for the field data exhibit fairly strong fluctua-
tions, the prescribed trend is clearly visible.

Once convergence of the parameter estimate has
been identified, the "best" estimate can be read from
the plot or calculated as the numerical average of

the estimates in the region of convergence. For
example, the region of convergence in Figure 7 can be
defined by the lag ratios 0.33% to 0.82%. Accord-
ingly, the best estimate of the damping ratio, deter-
mined as the average value over this range of lag
ratios is 2.0%. The standard deviation which quanti-
fies the uncertainty in the best estimate is given by
the appraximate value observed at the onset of con-
vergence. For this example, the standard deviation
is approximately 0.3% of critical damping. In view of
the judgment required to Jocate the region of con-
vergence and the approximate nature of the standard
deviation calculation, estimates should be limited to
two for damping ratios, ang one for standard devia-
tions.

This selection procedure was applied to the
other fundamental modes. The resulting damping esti-
mates are shown in Tahle 1 with their corresponding
* 20 uncertainties. Dampings were also computed from
Biackman-Tukey spectral estimates using a maximum lag
of 160 seconds. These results are included in
Table 1 along with estimates obtained by J. A. Ruhl
{6] using forced vibration. The MEM damping esti-
mates show very good agreement with Ruhl's transient
decay tests. In each case, Ruhl's estimates computed
over cycles 0-4 and 0-10 are included in the confi-
dence interval for the MEM estimates. Conversely,
damping estimates compute from Blackman-Tukey spectra
severely underpredict the damping. However, the use
of slightly different resolution (i.e., alternate
windows and/or maximum Tags) produced damping esti-
mates which significantly overpredicted the damping.
Ir these cases, there was no apparent means of choos-
ing the appropriate estimate.

Similar results were reported by Enochson [7]
who analyzed 27.6 minutes of acceleration response
data from South Pass 62C using a digital Laplace
transform technique. OBDepending on the resolution
selected, his reported damping estimates for the
lowest flexural mode varied from 0.3% to 2.6% with no
indication of the most reliable result.

CONCLUSTONS

1. Half-power bandwidth damping estimates made from
conventionally obtained ambient response spectra
were shown to be an unreliable measure of the
true damping.

2. Confidence intervals were suggested as a con-
venient means of including the probabalistic
nature of the damping estimation probiem.

3. Lacking the information required to construct
confidence intervals for conventional damping
estimates, simulations studies were used to
demonstrate the nature of the bias and variance
in the damping estimator. The variance was
shown to be too large to neglect under normal
circumstances.

4. A new technique for estimating natural frequen-
cies and damping ratios was developed using a
powerful method of spectral estimation known as
the Maximum Entropy Method. The resulting
technique yields parameter estimates as well as
the information required to construct approxi-
mate confidence intervals.

5. Simulation studies demonstrated the utility of
the MEM estimation statistics and exposed a
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simple scheme for obtaining the "optimum"
parameter estimates.

6. Use of the MEM damping estimator was iltustrated
with ambient response data from Shell 0il's
South Pass 62C platform. The results showed
excellent agreement with recent forced vibration

tests.
NOMENCLATURE
Al,Az,..,Ap = pth order MEM coefficients
R(k) = autocorrelation function at lag=kaA
S(f) = power spectral density function
f = frequency in Hertz
fn = natural frequency in Hertz
p = order of MEM spectral estimate
A = sampling increment in seconds
£ = ¢ritical damping ratio in percent
a = standard deviation
cs = scale factor for pth order MEM spectrum
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TABLE 1

SOUTH PASS 62C DAMPING RATIO ESTIMATES
FOR FIRST-ORDER MODES

J. A. RUHL — TRANSIENT DECAY
DAMPING OVER CYCLES

BLACKMAN-TUKEY MEM 0-4 5-9 0-10
BROADSIDE 1.14 20:06 1.65 0.86 1.38
END-ON 0.45 2108 1.72 1.29 1.53
TORSION 0.27 1.3:04 1.20 1.03 1.1

ALL DAMPING RATIOS MEASURED IN %
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Fig. 3 - Mem extension of an autocorrelation
funceion.
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Fig. 4 - Performance of the mem damping estimator - 1 def.
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Fig. 5 - Performance of the mem damping estimator - 2 dof.
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Fig. 6 - mem broadside response spectrum for
south pass 62 ¢c.
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Fig., 7 - mem damping ratio estimates - 1lat breadside
flexure mode.
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